

FEVER-OOD: Free Energy Vulnerability Elimination for Robust Out-of-Distribution Detection

Brian K.S. Isaac-Medina*,†, Mauricio Che‡, Yona Falinie A. Gaus*, Samet Akçay§ and Toby P. Breckon* *Durham University, †OpenWorks Engineering, ‡University of Vienna, §Intel

Motivation: Free-Energy Score

The Free Energy score is an effective measure of uncertainty for OOD detection^{1,2,3,4}. For a classifier, it is:

$$F(x) = -\log \sum_{k=1}^{K} \exp\left(W_{cls_k}^{\mathsf{T}} \cdot h(x)\right)$$
x: Input sample.
K: Total in-distribution categories.

 $h(x) \in \mathbb{R}^{d'}$: Feature vector of x.

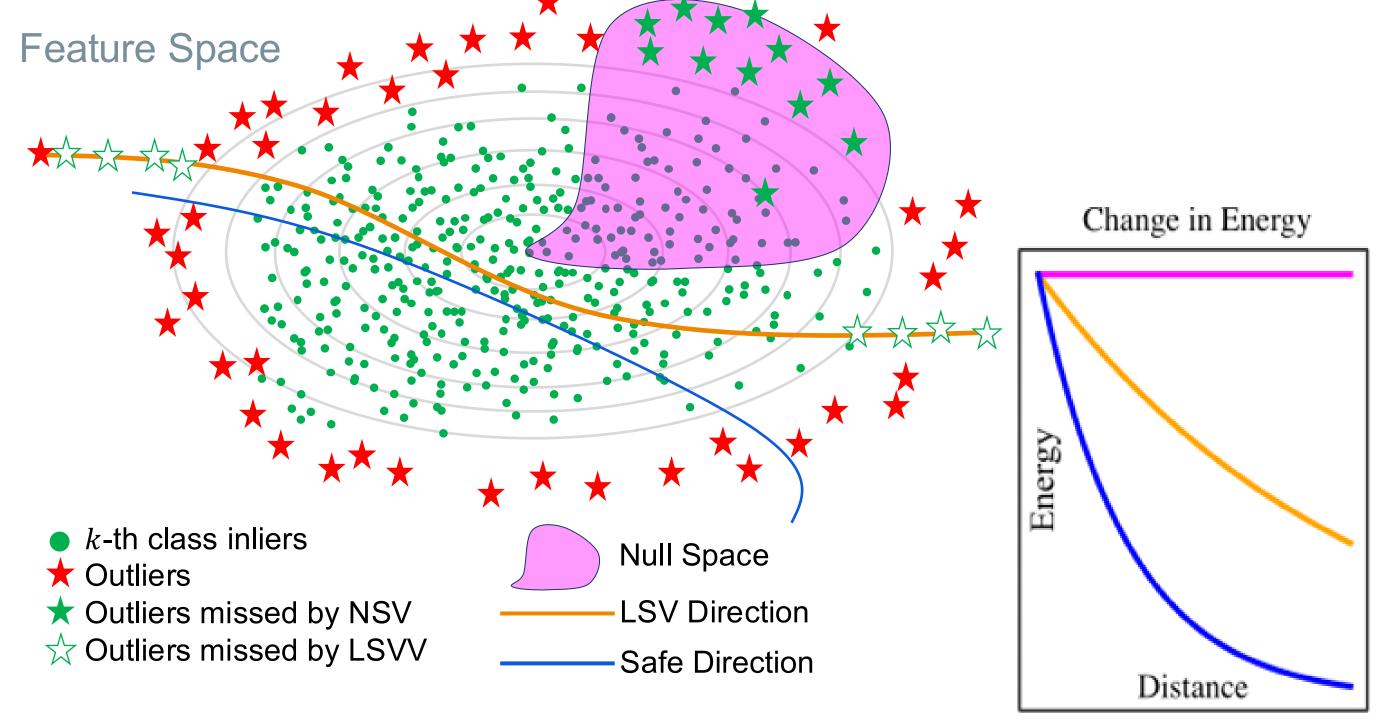
 $W_{cls} \in \mathbb{R}^{d' \times K}$: Last linear layer of the classifier $W_{cls_k}^T \in \mathbb{R}^{d'}$: k-th column of W_{cls} .

Null Space Vulnerabilities (NSV)

If $\mathbf{v} = h(x)$, then it can be decomposed in

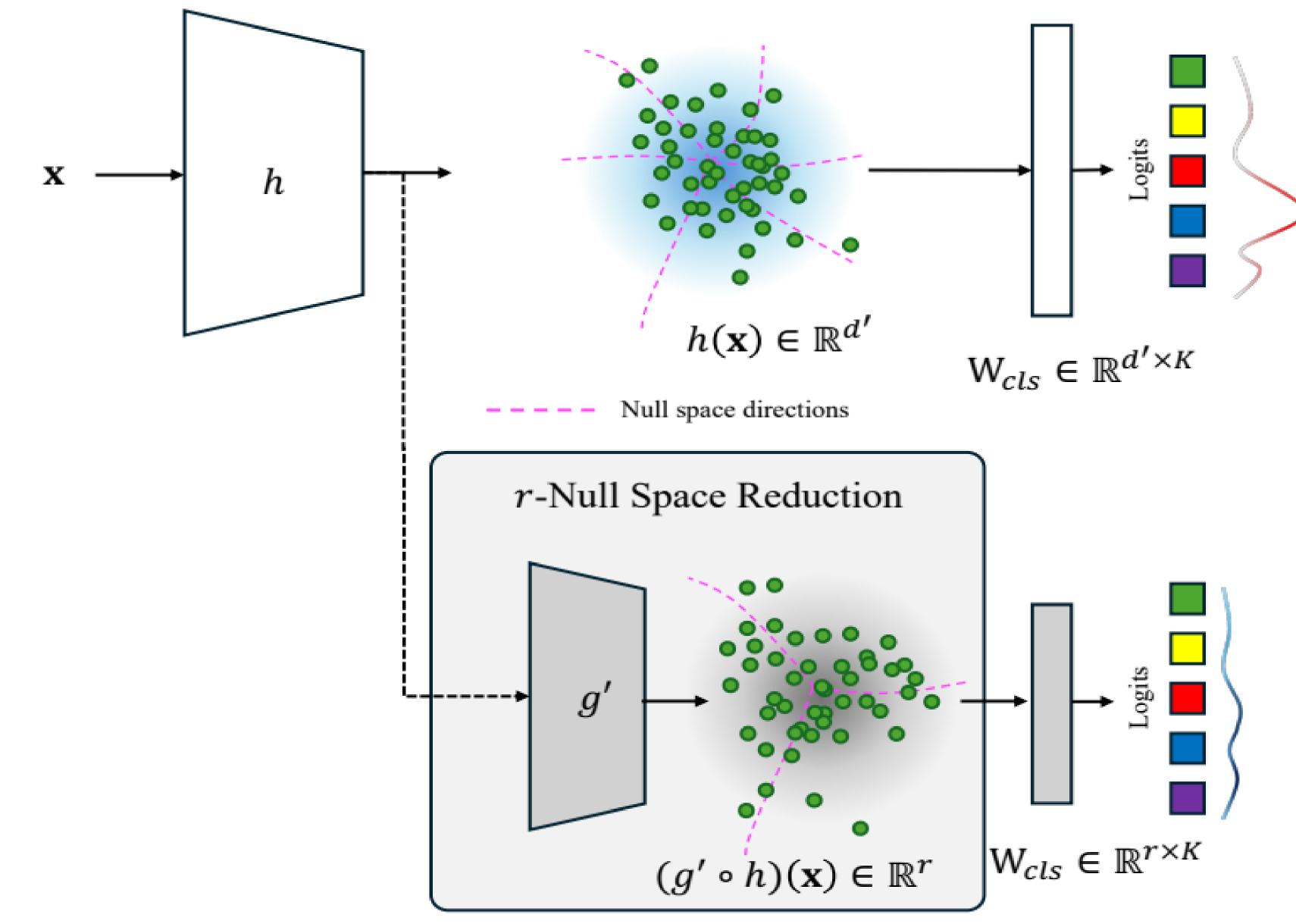
$$\mathbf{v} = \text{Null}(\mathbf{W}_{cls})\mathbf{v}_0 + \text{Null}(\mathbf{W}_{cls})^{\perp}\mathbf{v}_{\perp}$$

where \mathbf{v}_0 lies in the null space of W_{cls} and \mathbf{v}_{\perp} is orthogonal to \mathbf{v}_0 . Therefore, the free energy is dominated by \mathbf{v}_{\perp} which may lie in the ID space. Least Singular Value Vulnerabilities (LSVV) Similarly, if a significant part of v₁ lies in the direction of the least singular vector of W_{cls} , then it might have a similar ID free-energy score (full proof in paper).



FEVER-00D: Mitigating the Vulnerabilities

Null space reduction (NSR): adding an extra linear-layer $g': \mathbb{R}^{d'} \to \mathbb{R}^r$, with r < d' such that the nullity of W_{cls} decreases.



Least Singular Value Regularisation: we propose two regularisation loses to increase the least singular value σ_{min} : Least Singular Value Regulariser (LSVR)

$$\mathcal{L}_{LSV} = \sigma_{min}^{-1}(W_{cls})$$

Conditioning Number Regulariser (CNR)

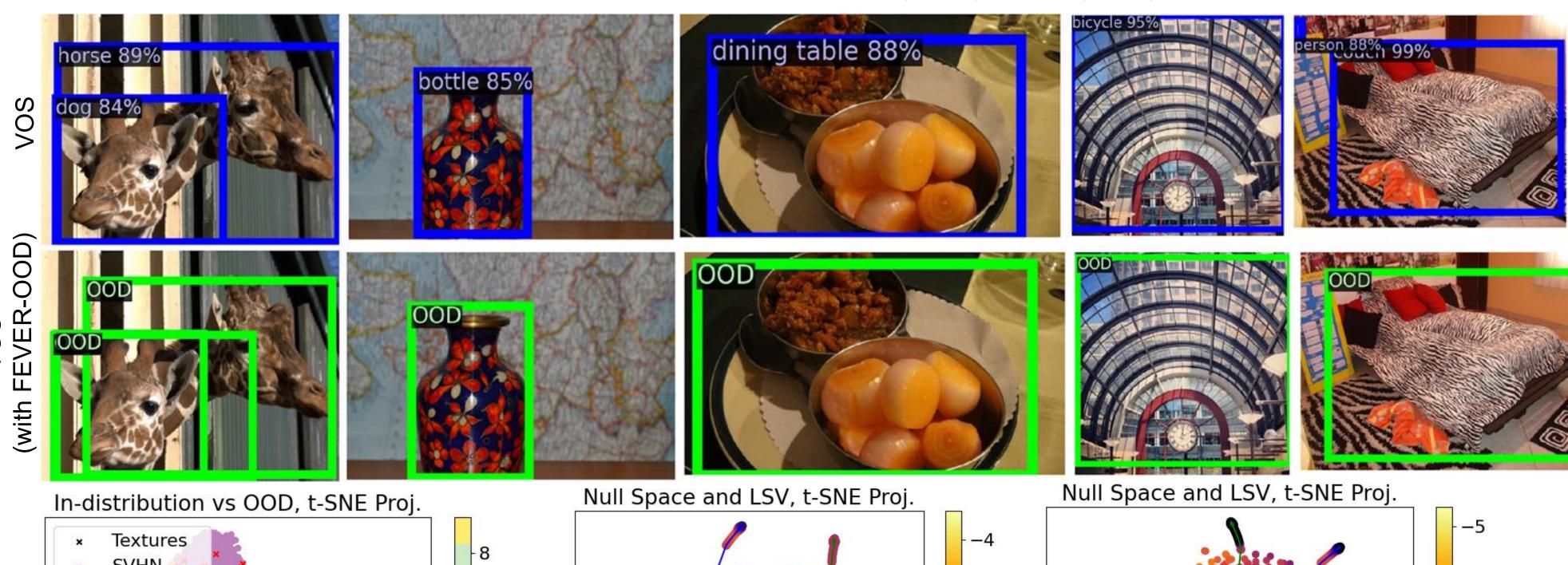
$$\mathcal{L}_{CN} = \sigma_{max}(W_{cls})/\sigma_{min}(W_{cls})$$

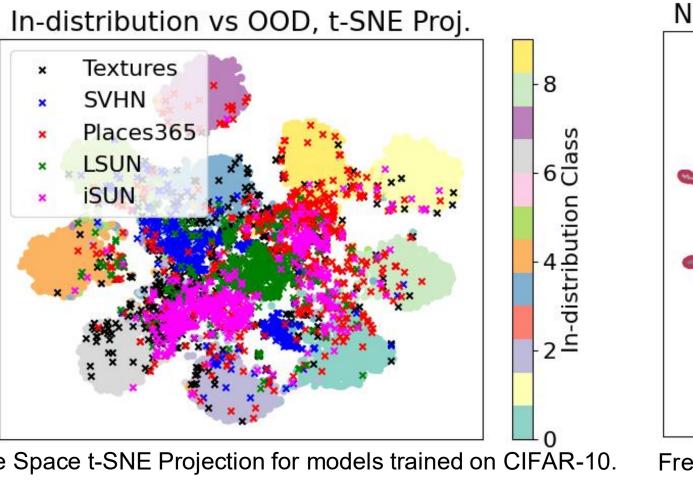
Results: FEVER-OOD achieved SOTA in OOD detection for both tasks

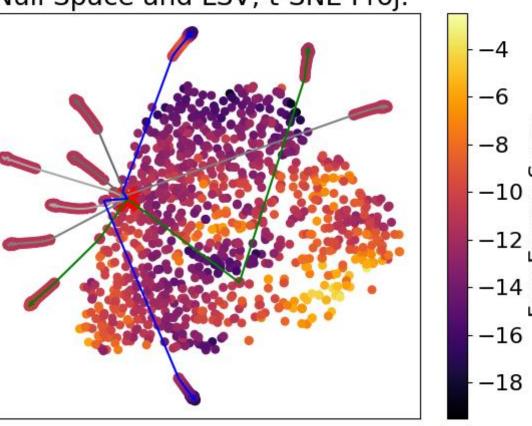
							, , , , , ,
	Dataset	Method	FEVE	ER-OOD	Average		Meth
			NSR	Reg	FPR95	AUROC	
	CIFAR-10	VOS	-	-	33.66	92.15	
			96	1.0	28.22	94.78	
		FFS	-	-	34.82	90.52	
			96	1.0	31.04	94.03	NOS
	CIFAR-100	NOS	-	-	71.01	81.02	
			114	0.01	68.57	82.83	
		FFS	-	-	71.89	80.89	
			114	0.001	66.14	83.47	
		Dream -00D	-	-	50.96	88.06	FFS
			100	-	42.77	89.98	正
	mage let-100	Dream -OOD	-	-	39.33	91.85	
			100	0.01	36.50	92.74	Results

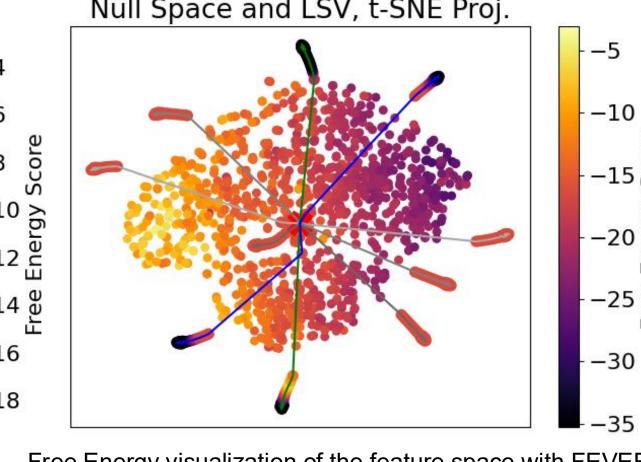
Method	FEVER-OOD		Average				
			OOD Dataset				
			MS-COCO		OpenImages		
	NSR	Reg	FPR95	AUROC	FPR95	AUROC	
(0	-	-	50.29	87.77	53.09	86.58	
NOS	768	-	47.47	88.15	49.36	86.32	
	256	-	47.88	88.49	52.41	86.39	
	-	-	50.77	87.18	53.78	85.34	
Ø	512	-	46.93	88.82	53.89	86.28	
FFS	256	-	51.18	88.74	53.67	86.56	
	256	0.01	47.93	88.04	47.93	84.95	

rith PASCAL VOC AS ID dataset & MS-COCO, OpenImages as OOD datase









Conclusions:

Vulnerabilities: NSV (overlapping ID-OOD scores) and LSVV (energy similarity).

Approach: Extra layer with CNR, compact features with LSVR and CNR regularizers for clearer score separation and stable energy.

Results: 10.13% ↓ FPR, +1.6% ↑ AUROC on Dream-OOD (ImageNet-100), new SOTA.

Generalization: Works across varied detection architectures.

- [1] Liu et al., Energy-based Out-of-distribution Detection, NeurIPS 2020
- [2] Du et al., VOS: Learning What You Don't Know by Virtual Outlier Synthesis, ICML 2022
- [3] Kumar et al., FFS: Normalizing Flow based Feature Synthesis for Outlier-Aware Object Detection, CVPR 2023 [4] Du et al., Dream the Impossible (Drean): Outlier Imagination with Diffusion Models, NeurIPS 2023